skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bozarth, Lia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Past work has explored various ways for online platforms to leverage crowd wisdom for misinformation detection and moderation. Yet, platforms often relegate governance to their communities, and limited research has been done from the perspective of these communities and their moderators. How is misinformation currently moderated in online communities that are heavily self-governed? What role does the crowd play in this process, and how can this process be improved? In this study, we answer these questions through semi-structured interviews with Reddit moderators. We focus on a case study of COVID-19 misinformation. First, our analysis identifies a general moderation workflow model encompassing various processes participants use for handling COVID-19 misinformation. Further, we show that the moderation workflow revolves around three elements: content facticity, user intent, and perceived harm. Next, our interviews reveal that Reddit moderators rely on two types of crowd wisdom for misinformation detection. Almost all participants are heavily reliant on reports from crowds of ordinary users to identify potential misinformation. A second crowd--participants' own moderation teams and expert moderators of other communities--provide support when participants encounter difficult, ambiguous cases. Finally, we use design probes to better understand how different types of crowd signals---from ordinary users and moderators---readily available on Reddit can assist moderators with identifying misinformation. We observe that nearly half of all participants preferred these cues over labels from expert fact-checkers because these cues can help them discern user intent. Additionally, a quarter of the participants distrust professional fact-checkers, raising important concerns about misinformation moderation. 
    more » « less
  2. Abstract Political and social scientists have been relying extensively on keywords such as hashtags to mine social movement data from social media sites, particularly Twitter. Yet, prior work demonstrates that unrepresentative keyword sets can lead to flawed research conclusions. Numerous keyword expansion methods have been proposed to increase the comprehensiveness of keywords, but systematic evaluations of these methods have been lacking. Our paper fills this gap. We evaluate five diverse keyword expansion techniques (or pipelines) on five representative social movements across two distinct activity levels. Our results guide researchers who aim to use social media keyword searches to mine data. For instance, we show that word embedding-based methods significantly outperform other even more complex and newer approaches when movements are in normal activity periods. These methods are also less computationally intensive. More importantly, we also observe that no single pipeline can identify little more than half of all movement-related tweets when these movements are at their peak mobilization period offline. However, coverage can increase significantly when more than one pipeline is used. This is true even when the pipelines are selected at random. 
    more » « less
  3. In studies of misinformation, the distinction between high- and low-credibility publishers is fundamental. However, there is much that we do not know about the relationship between the subject matter and timing of content produced by the two types of publishers. By analyzing the content of several million unique articles published over 28 months, we show that high- and low-credibility publishers operate in distinct news ecosystems. Bursts of news coverage generated by the two types of publishers tend to cover different subject matter at different times, even though fluctuations in their overall news production tend to be highly correlated. Regardless of the mechanism, temporally convergent coverage among low-credibility publishers has troubling implications for American news consumers. 
    more » « less
  4. null (Ed.)
    In this paper, we provide a large-scale analysis of the display ad ecosystem that supports low-credibility and traditional news sites, with a particular focus on the relationship between retailers and news producers. We study this relationship from both the retailer and news producer perspectives. First, focusing on the retailers, our work reveals high-profile retailers that are frequently advertised on low-credibility news sites, including those that are more likely to be advertised on low-credibility news sites than traditional news sites. Additionally, despite high-profile retailers having more resources and incentive to dissociate with low-credibility news publishers, we surprisingly do not observe a strong relationship between retailer popularity and advertising intensity on low-credibility news sites. We also do not observe a significant difference across different market sectors. Second, turning to the publishers, we characterize how different retailers are contributing to the ad revenue stream of low-credibility news sites. We observe that retailers who are among the top-10K websites on the Internet account for a quarter of all ad traffic on low-credibility news sites. Nevertheless, we show that low-credibility news sites are already becoming less reliant on popular retailers over time, highlighting the dynamic nature of the low-credibility news ad ecosystem. 
    more » « less
  5. Existing studies of social movement organizations (SMOs) commonly focus only on a small number of well-known SMOs or SMOs that belong to a single social movement industry (SMI). This is partially because current methods for identifying SMOs are labor-intensive. In contrast to these manual approaches, in our article, we use Twitter data pertaining to BlackLivesMatter and Women’s movements and employ crowdsourcing and nested supervised learning methods to identify more than 50K SMOs. Our results reveal that the behavior and influence of SMOs vary significantly, with half having little influence and behaving in similar ways to an average individual. Furthermore, we show that collectively, small SMOs contributed to the sharing of more diverse information. However, on average, large SMOs were significantly more committed to movements and decidedly more successful at recruiting. Finally, we also observe that a large number of SMOs from an extensive set of SMIs, including Occupy Wall Street, participated in solidarity or even as leaders in BlackLivesMatter. In comparison, few SMIs participated in Women’s movement. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)